Global Nonexistence in a Nonlinearly Damped Wave Equation
نویسنده
چکیده
منابع مشابه
Global Existence and Nonexistence in a System of Petrovsky
In this paper we consider the nonlinearly damped semilinear Petrovsky equation utt + 2u+ aut ut m−2 = bu u p−2 in a bounded domain, where a b > 0. We prove the existence of a local weak solution and show that this solution blows up in finite time if p > m and the energy is negative. We also show that the solution is global if m ≥ p. 2002 Elsevier Science
متن کاملBlow Up in a Nonlinearly Damped Wave Equation
In this paper we consider the nonlinearly damped semilinear wave equation utt −∆u + aut |ut|m−2 = bu|u|p−2 associated with initial and Dirichlet boundary conditions. We prove that any strong solution, with negative initial energy, blows up in finite time if p > m. This result improves an earlier one in [2].
متن کاملExponential decay of solutions of a nonlinearly damped wave equation
The issue of stablity of solutions to nonlinear wave equations has been addressed by many authors. So many results concerning energy decay have been established. Here in this paper we consider the following nonlinearly damped wave equation utt −∆u+ a(1 + |ut|)ut = bu|u|p−2, a, b > 0, in a bounded domain and show that, for suitably chosen initial data, the energy of the solution decays exponenti...
متن کاملThe time singular limit for a fourth-order damped wave equation for MEMS
We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential. We first review some recent results on existence and nonexistence of steady-states as well as on local and global well-posedness of the dyn...
متن کاملBlow up in the Cauchy problem for a nonlinearly damped wave equation
In this paper we consider the Cauchy problem for the nonlinearly damped wave equation with nonlinear source utt −∆u + aut|ut|m−2 = bu|u|p−2, p > m. We prove that given any time T > 0, there exist always initial data with sufficiently negative initial energy, for which the solution blows up in time ≤ T. This result improves an earlier one by Todorova [11].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002